Distribution patterns of subtidal macrobenthos in the Tsitsikamma National Park

Sampling event
最新版本 published by The South African Institute for Aquatic Biodiversity on 12月 31, 2019 The South African Institute for Aquatic Biodiversity
發布日期:
2019年12月31日
授權條款:
CC-BY 4.0

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 372 紀錄 在 English 中 (225 KB) - 更新頻率: 無計畫更新
元數據EML檔 下載 在 English 中 (19 KB)
元數據RTF文字檔 下載 在 English 中 (15 KB)

說明

Subtidal macrobenthos was sampled in the Tsitsikamma National Park between 2009 and 2012 to compare shallow (11–25 m) and deep (45–75 m) sites. The resultant records of sampling events, photographic images of the sea floor, and invertebrate and algal species occurrences constitute this dataset. See Heyns et al. (2016). The following classes of data are represented. DwC Event Core: A parent sampling event represents a sample station in which 30 child sampling events / photoquadrats were randomly selected. There are 6 sample stations / parent events (i.e. 180 child sampling events / photoquadrats) for the deep site and 6 parent events (180 child sampling events / photoquadrats) for the shallow site. A 0.2m^2 photoquadrat on each photo was sampled using Coral Point Count for Excel, using 54 random points. DwC Occurrence Extension: An occurrence record represents the percentage cover of a species calculated from the 54 random points falling in the 0.2m^2 photoquadrat (i.e. the individual species points from each photoquadrat have not been published). DwC Extended Measurement or Fact Extension: Each record represents the percentage cover, in the 0.2m^2 photoquadrat, of the following elements (either Tape/Wand/Shadow), abiotic features (e.g. shells, substrate) or biodiversity that could not be identified, even at a high level. DwC Audubon Media Description: Each record represents the digital photograph containing the 0.2m^2 photoquadrat.

資料紀錄

此資源sampling event的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 372 筆紀錄。

亦存在 3 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Event (核心)
372
Occurrence 
2970
ExtendedMeasurementOrFact 
1488
Multimedia 
360

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Heyns-Veale E (2019): Distribution patterns of subtidal macrobenthos in the Tsitsikamma National Park. v1.8. The South African Institute for Aquatic Biodiversity. Dataset/Samplingevent. http://ipt.saiab.ac.za/resource?r=tsitsikamma&v=1.8

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 The South African Institute for Aquatic Biodiversity。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 96f53e46-902a-48d5-a599-7c96c065b214。  The South African Institute for Aquatic Biodiversity 發佈此資源,並經由South African Biodiversity Information Facility同意向GBIF註冊成為資料發佈者。

關鍵字

macrobenthic communities; fish habitat; warm-temperate reefs; photoquadrats; Occurrence

聯絡資訊

Elodie Heyns-Veale
  • 出處
  • 連絡人
Researcher
KwaZulu-Natal Museum
237 Jabu Ndlovu Street
3201 Pietermaritzburg
KwaZulu-Natal
ZA
+ 27 33 3410523
Willem Coetzer
  • 元數據提供者
  • 處理者
Biodiversity Information Manager
South African Institute for Aquatic Biodiversity
Somerset Street
6139 Grahamstown
Eastern Cape
ZA
+27 46 603 5841

地理涵蓋範圍

Photoquadrats were collected just offshore from the Storms River mouth, inside the Tsitsikamma National Park marine protected area, South Africa, between 11 - 25 and 45 - 75 m depth.

界定座標範圍 緯度南界 經度西界 [-34.04, 23.892], 緯度北界 經度東界 [-34.023, 23.924]

分類群涵蓋範圍

Marine macrobenthos identifiable from photoquadrats

Phylum Bryozoa, Brachiopoda (Lampshells), Echinodermata (Echinoderms), Porifera (Sponges)
Subphylum Tunicata (Acsidians)
Class Anthozoa, Hydrozoa (Hydroids), Gastropoda, Florideophyceae (Red algae)
Family Codiaceae (Green algae), Dictyotaceae (Brown algae)

時間涵蓋範圍

起始日期 / 結束日期 2009-07-19 / 2012-07-25

計畫資料

Effective marine resource management requires knowledge of the distribution of critical habitats that support resource populations and the processes that maintain them. Reefs that host diverse macrobenthic communities are important habitats for fish. However, detailed information on macrobenthic communities is rarely available and is usually limited to SCUBA diving depths. To establish depth-related distribution patterns and drivers that structure reef communities, the macrobenthos situated in a warm-temperate marine protected area (MPA; 34°01′24S; 23°54′09E) was sampled between 2009 and 2012. Comparison of shallow (11–25 m) and deep (45–75 m) sites revealed significantly different communities, sharing only 27.9 % of species. LINKTREE analysis revealed a changeover of species along the depth gradient, resulting in four significantly different assemblage clusters, each associated with particular environmental variables. High light intensity supported benthic algae at shallow depths, and as light availability decreased with depth, algal cover diminished and was eventually absent from the deep reef. Upright growth forms and settled particulate matter were positively related to depth and dominated the deep reef. Reduced wave action and currents on the deep reef can explain the increased settling of suspended particles. Under such conditions, clogging of feeding parts of the encrusting species is expected, and upright growth would be favoured. Considering that most MPAs are restricted to shallow coastal habitats and that macrobenthic communities change significantly with depth, it is probable that many unique deep reef habitats are currently afforded no protection.

計畫名稱 Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area
經費來源 Funding for this project was provided by the National Research Foundation of South Africa, the Elwandle Node of the South African Environmental Observation Network, the South African Institute for Aquatic Biodiversity, the African Coelacanth Ecosystem Programme and the British Ecological Society.
研究區域描述 The research was conducted in the Tsitsikamma National Park (TNP) MPA, which is one of Africa’s oldest (established in 1964) and largest (360 km2) no-take MPAs. The TNP MPA is situated in the middle of the warm-temperate Agulhas Ecoregion. It protects a 60-km stretch of coastline and extends 5 km offshore to a depth of approximately 100 m. The geology comprises steeply sloped quartzitic sandstone beds that lie parallel to the coastline. Subtidally, these rocky formations form a series of parallel reef ridges separated by valleys filled with fine-grained sand. Sampling was conducted at shallow (11–25 m) and deep (45–75 m) reef sites situated in the middle of the TNP MPA. Both the shallow (area: 1.8 km2) and deep (area: 3.15 km2) sites included large expanses of solid high- and low-profile reefs. The reef sites represent some of the best examples of pre-exploitation subtidal communities in South Africa.
研究設計描述 Our aims were to characterize the species composition and distribution of the macrobenthos and identify the processes that might be responsible for any differences between shallow (11–25 m) and deep (45–75 m) nearshore reefs.

參與計畫的人員:

取樣方法

Prior to sampling, both reef sites were bathymetrically mapped with a GPS-linked echo sounder and a 300 × 300 m grid was overlaid on the mapped sites. Each grid was classified according to profile (high or low), and sampling followed a stratified random approach, with even allocation of sampling effort between reef sites and high and low profile reefs.

研究範圍 The shallow reef site (11 - 25 m) was situated just east of the Storms River mouth (-34.0198, 23.9034) and the deep reef site (45 - 75 m) was about 1 km south west of the Storms River mouth.

方法步驟描述:

  1. Assemblage composition The species compositions of the macrobenthic assemblages were determined by estimating percentage cover from photoquadrats collected at six sample stations within each reef site. Photoquadrats on the shallow reef site were obtained by SCUBA divers. From the midpoint of each station, divers swam 25 meters in eight predefined directions. Eight to ten photographs were then haphazardly taken around the 25-m distance mark using a Canon G9 camera (12.1 meg- apixels) mounted on a tripod. The tripod setup maintained a set distance from the substrate and sampled an area of ca. 0.33 m2. On the deep reef, photoquadrats were obtained with a ROV (Falcon Seaeye: 12177) fitted with a 1Cam (SubC Control; 12.3 megapixel HD camera). The 1Cam, which could be orientated to capture benthic images at a 90° angle, was fitted with two laser pointers, thus permitting size approximation of the sampled area. Due to strong currents and restricted maneuverability, sampling at each deep reef station was conducted along a single 100-m transect, in contrast to the method employed at the shallow reef site. Along each transect, the ROV captured between 100 and 150 photoquadrats within 2 m of either side of the transect line. Thirty photographs were selected randomly from each sample station, amounting to 180 photoquadrats per reef site. Photoquadrats were calibrated in Coral Point Count with Excel extensions (CPCe 4.1) and 56 × 31 cm (0.2 m2) blocks were superimposed onto individual images. A species accumulation curve was plotted to estimate the number of points required to identify 95 % of the macrobenthic species per photoquadrat, which indicated that 54 points were required. Under each point, individuals or colonies were identified to the nearest taxon (noting substrate cover where applicable). Environmental variables During November 2011 and February 2012, light intensity (photosynthetically active radiation; 400–700 nm) was measured at three randomly selected sample stations from both the shallow and deep reef sites. Light intensity measurements were taken by employing a LICOR LI-193 Spherical Quantum Sensor. Temperature data were recorded by divers on the shallow reef, and a temperature probe (Onset HOBO Pro v2) was attached to the ROV to obtain temperature data when deep reef photoquadrats were collected. Reef profiles for each sampling station were estimated by divers on the shallow reef and from the ROV footage on the deep reef. The overlay from the ROV provided accurate depth measurements and allowed for estimates of the deep reef profile. Substrate type was estimated as percentage cover obtained from the photoquadrats. Depth was recorded by divers at the beginning and end of each transect. Care was taken to follow a depth contour when conducting all transects with the ROV, thereby standardizing depth during sampling. To summarize, data for temperature, reef profile, depth and substrate type were collected from at each sampling station. In contrast, light intensities were extrapolated according to station depth, from light profiles constructed from data collected during two seasons from three stations per reef, as indicated above.

額外的詮釋資料

替代的識別碼 96f53e46-902a-48d5-a599-7c96c065b214
http://ipt.saiab.ac.za/resource?r=tsitsikamma